
DIAEAZ 63(7) 2185-2564 (2014)
ISSN 0012-1797

A JOURNAL OF THE AMERICAN DIABETES ASSOCIATION
July 2014 | Volume 63 | Number 7 | www.diabetes.org/diabetes



Francesco Rubino and Stephanie A. Amiel

Is the Gut the “Sweet Spot”
for the Treatment of Diabetes?
Diabetes 2014;63:2225–2228 | DOI: 10.2337/db14-0402

Oskar Minkowski possessed a rare combination of talents:
He was an internist with the intuition of a scientist and
the dexterity of a surgeon. One day in 1889, he and his
colleague Joseph von Mering at the University of Stras-
bourg performed a total pancreatectomy in a dog to
investigate if pancreatic enzymes were necessary to break
down fatty acids in the gut. The dog survived the opera-
tion but unexpectedly developed polyuria, thirst, hunger,
and glycosuria. Minkowski joined the dots to realize the
link between the pancreas and diabetes (1).

This story is just one example of how surgical manip-
ulations of anatomy can play a major role in advancing
knowledge about physiology and disease. Many lessons
about the functioning of the central nervous system, the
pituitary gland, and the adrenals have been learned
through the help of a scalpel (2), and Minkowski’s ob-
servation provided the fundamental clue that lead to
the discovery of insulin by Banting and Best in 1921.

More than a century later, surgery may again provide
a unique opportunity to improve our understanding of
glucose homeostasis, diabetes, and b-cell growth. Readers
of Diabetes will know that a number of gastrointestinal
(GI) operations used to cause weight loss (bariatric sur-
gery) has also been shown to cause remission of type 2
diabetes (T2D) (3,4) as well as improvement of hyper-
tension and dyslipidemia (5) and reduction of cardiovas-
cular disease and death associated with diabetes and
obesity (6). The mechanisms by which these operations
control diabetes have become the subject of intense re-
search in recent years, fueled by the experimental evi-
dence that GI bypass surgeries can induce very rapid
antidiabetes effects, independent of weight loss (7).

The pathophysiology of T2D is complex but the disease
is characterized by a combination of insulin resistance
and defective insulin secretion that worsens over time (8);
treatments of curative intent would need to address
both defects. GI bypass procedures can improve insulin
sensitivity and production (9,10), suggesting that the
GI tract may be a “sweet spot” for diabetes treatment.

In particular, Roux-en-Y gastric bypass (RYGB) restores
first-phase insulin response (10) and results in hyperse-
cretion of C-peptide and insulin following nutrient in-
gestion (11), suggesting enhancement of b-cell function
(12). Increased b-cell mass has also been hypothesized
following controversial reports of nesidioblastosis compli-
cating RYGB (13). Other hints of an effect of GI surgery on
b-cell growth derive from observations of increased PDX1
levels (14) and prevention of b-cell loss after experimental
duodenal-jejunal bypass in rodents (15), as well as from
case reports of heterotopic pancreatic mass after RYGB
in humans (16).

Lindqvist et al. (17) add support to the hypothesis that
RYGB can stimulate b-cell growth. In their study, mor-
phometric analysis revealed a doubling of b-cell mass and
islet number in four RYGB-treated pigs, studied 20 days
after surgery and compared with pair-fed, sham-operated
controls. Extraislet b-cells, a surrogate marker of islet
neogenesis, also were more frequent after RYGB. There
was a greater number of immune-reactive cells per area
for both insulin (1.8-fold increase) and glucagon (1.5-fold)
in RYGB pigs, although increments in mRNA expression
did not achieve significance for either hormone. Immune-
reactive cells for GLP-1 receptor were also 3.8-fold higher
after RYGB. The authors concluded that increased
b-cell mass may explain improved glucose tolerance
after RYGB.

The authors acknowledged that their study has limi-
tations. The small sample size and the choice of the
porcine model, whose regulation of energy homeostasis
is less well characterized than in other animal models,
limit the generalizability of the findings. The use of
nondiabetic animals and their failure to lose weight after
RYGB also prevent the drawing of firm conclusions about
the potential to induce b-cell regeneration in human
insulin-deficient diabetes and on the relative importance
of b-cell growth versus changes in insulin sensitivity in the
remission of diabetic glycemia after RYGB. Nevertheless,
their results do support the hypothesis that modifications
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of GI anatomy may influence the regulation of b-cell
growth and highlight the importance of further research
in this area.

How RYGB exerts its effects on the islets in pigs or
humans remains unclear. Enhanced incretin effect after

surgery may provide a straightforward explanation. In
fact, in both humans and rodents, RYGB causes a three-
to fourfold increase in postprandial levels of GLP-1 (11),
an incretin hormone that stimulates insulin release from
the pancreas and also exerts antiapoptotic effects on the

Figure 1—Anti-incretin theory and mechanisms of gastric bypass surgery. The anti-incretin theory (A) postulates that in addition to the well-
known incretin effect (GLP-1, glucose-dependent insulinotropic polypeptide), nutrient passage in the bowel can also cause activation
of negative feedback mechanisms (anti-incretins) to balance the effects of incretins and other postprandial glucose-lowering mechanisms
(i.e., suppression of ghrelin, glucagon, and hepatic glucose production via activation of nutrient sensing). Incretins enhance insulin
secretion, insulin action, and b-cell function and growth. In the absence of one or more control mechanisms, these effects would expose
to the risk of postprandial hyperinsulinemic hypoglycemia and uncontrolled b-cell proliferation. In fact, postprandial hypoglycemia and
proliferative disorders of the b-cell (i.e., nesidioblastosis and insulinomas) are rare, suggesting that the action of incretins may be phys-
iologically balanced by anti-incretins (the name collectively indicates putative hormonal, metabolic, or neural mechanisms) to maintain
normal glucose homeostasis. Predictions of the anti-incretin theory (B): Excess of anti-incretin signals, perhaps stimulated by macronu-
trient composition or chemical additives of modern diets, might cause insulin resistance, reduced insulin secretion, and b-cell depletion,
leading to T2D. Conversely, reduction of anti-incretin signals below thresholds necessary to control incretin-driven responses might result
in postprandial hypoglycemia and uncontrolled b-cell proliferation. Changes in the anti-incretin/incretin balance may explain benefits and
complications of gastric bypass surgery (C ). Reduction of nutrient stimuli on the gut by diet or, more radically, by operations that resect
parts of the foregut or exclude segments of small bowel from nutrients transit (i.e., RYGB, duodenal-jejunal bypass, biliopancreatic
diversion) could restore appropriate incretins/anti-incretins balance, explaining improvement/remission of T2D. Disruption of GI continuity,
however, might reduce anti-incretin signals below minimal thresholds to compensate for incretin actions, thus explaining the postprandial
hypoglycemia that can complicate RYGB. The same mechanism could also cause loss of control on b-cell proliferation, leading to
increased b-cell mass even in normal subjects as seen in the study by Lindqvist et al. (17).
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b-cells (18). Increased expression of islet GLP-1 receptor
after RYGB as reported by Lindqvist et al. could contrib-
ute to increased b-cell mass. However, GLP-1 responses to
the intravenous glucose load used in the study are not given
and the impact of RYGB on the b-cells and insulin in the
islets was mirrored by effects on b-cell and glucagon, at
odds with the known glucagon-suppressing effects of GLP-
1 (19). Also, recent studies using mice models of functional
GLP-1 deficiency, GLP-1 receptor knockout mice (20), and
inhibition of GLP-1 receptor by exendin(9–39) in humans
(21) call into question the role of GLP-1, suggesting that
the mechanisms of action of RYGB are more complex.

RYGB excludes the duodenum and jejunum from the
transit of nutrients, which seems to have specific antidia-
betes effects (22,23). Given the close anatomic relationship
between the duodenum and the pancreas, one cannot
exclude that changes in regional/paracrine neuroendo-
crine mechanisms could also influence b-cell function
and growth.

It is important to note that the increase in b-cell mass
after RYGB occurred in normal animals and may therefore
represent the result of a disruption of the physiologic
control of b-cell proliferation that maintains normal
b-cell mass. This is consistent with predictions made by
the anti-incretin theory (24,25). This theory (Fig. 1) pos-
tulates that in addition to the well-known incretin effect
(through GLP-1, glucose-dependent insulinotropic poly-
peptide), nutrient passage in the GI tract could also
cause activation of negative feedback mechanisms (anti-
incretins) to prevent postprandial hyperinsulinemic hypo-
glycemia. Given the antiapoptotic effects of incretins, the
existence of anti-incretin mechanisms would also be nec-
essary to prevent uncontrolled proliferation of b-cells
(Fig. 1A). We note that nesidioblastosis and insulinomas
are, in fact, rare. Reduction of anti-incretin signals below
thresholds necessary to control incretin-driven responses
would expose to the risk of hypoglycemia and uncontrolled
b-cell proliferation. Inadequate anti-incretins/incretins
balance due to disruption of GI continuity after RYGB
might therefore explain the increase in b-cell mass seen
in the study by Lindqvist et al. (17), as well as the post-
prandial hyperinsulinemic hypoglycemia that can com-
plicate RYGB (26) (Fig. 1C).

Preliminary evidence in support of the anti-incretin
theory comes from recent experiments showing that
protein extracts from the duodenum and/or jejunum of
diabetic rodents and humans induce insulin resistance
in cell-based assays and in vivo (27).

Whatever the explanation, the findings that RYGB can
influence regulation of b-cell growth in pigs contribute to
the growing body of evidence that RYGB exerts complex
and weight-independent effects on glucose homeostasis.
The observation requires confirmation in other animal
models and in humans, but it does support further re-
search into GI mechanisms involved in islet regulation, as
this may reveal new avenues for the treatment of type 2
and, possibly, type 1 diabetes.

Ten years ago, studies in diabetic rodents (7) provided
initial evidence that GI bypass surgery exerts direct effects
on glucose metabolism, suggesting that surgical manipu-
lations of the GI tract may be an effective therapeutic
approach for T2D as well as a powerful experimental
tool to elucidate elusive physiology and pathophysiology
of glucose homeostasis (7,24). Since then, several animal
and human investigations have shown that RYGB and
other procedures can improve T2D through a variety of
GI mechanisms, including changes in gut hormones
(18,19,21), bile acids metabolism (28), intestinal micro-
biota, nutrient sensing (29), and reprogramming of in-
testinal glucose metabolism (30). This demonstrates a
critical and previously underappreciated role of the
gut in glucose metabolism and underscores the impor-
tance of further research on the mechanisms of ac-
tion of GI surgery. In fact, more than a century after
Minkowski’s pancreatectomy, a surgical operation may
once again provide a lead for important discoveries in
diabetes research.
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